Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Can J Ophthalmol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38604239

RESUMO

OBJECTIVE: To assess the safety of replacing the postoperative week 1 (POW1) clinic visit with a nurse-conducted telephone call. DESIGN: Retrospective observational study that included cases from January 2019 to June 2021. PARTICIPANTS: Patients who had undergone uncomplicated phacoemulsification surgery with an unremarkable postoperative day 1 (POD1) examination. METHODS: All patients were seen in clinic on POD1 by an ophthalmologist. They then had a telephone conversation with a nurse at POW1 and subsequently an in-person postoperative month 1 (POM1) clinic consultation with an ophthalmologist. Main outcome measure was the incidence of unexpected management changes related to cataract surgery within POM1. Data also were collected on the reasons for unscheduled patient-initiated visits, additional procedures or medications, and postoperative visual acuity worse than 6/12 at POM1. RESULTS: Of the 20,475 patients, 541 patients (2.64%) had an unexpected management change within POM1. There were 565 patients (2.76%) who had self-initiated unscheduled visits between POD1 to POM1. There were 23 patients (0.11%) who required additional surgery within POM1 and 1 patient (0.005%) with endophthalmitis. The most common indication for additional surgical procedures was retained lens material (7 patients, 30.43%). Visual acuity was worse than 6/12 in 1,199 patients (6.22%), with the most common causes attributed to preexisting ocular conditions. CONCLUSIONS: These results suggest that replacing the POW1 visit with a nurse-conducted telephone consult for patients who have undergone uncomplicated phacoemulsification surgery and had a normal POD1 consultation is safe.

2.
Eye Vis (Lond) ; 11(1): 11, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494521

RESUMO

BACKGROUND: To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm2. METHODS: Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm2 and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated. RESULTS: The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm2. CONCLUSIONS: Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm2 in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.

3.
Ophthalmol Sci ; 4(3): 100441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420613

RESUMO

Purpose: We aim to use fundus fluorescein angiography (FFA) to label the capillaries on color fundus (CF) photographs and train a deep learning model to quantify retinal capillaries noninvasively from CF and apply it to cardiovascular disease (CVD) risk assessment. Design: Cross-sectional and longitudinal study. Participants: A total of 90732 pairs of CF-FFA images from 3893 participants for segmentation model development, and 49229 participants in the UK Biobank for association analysis. Methods: We matched the vessels extracted from FFA and CF, and used vessels from FFA as labels to train a deep learning model (RMHAS-FA) to segment retinal capillaries using CF. We tested the model's accuracy on a manually labeled internal test set (FundusCapi). For external validation, we tested the segmentation model on 7 vessel segmentation datasets, and investigated the clinical value of the segmented vessels in predicting CVD events in the UK Biobank. Main Outcome Measures: Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity for segmentation. Hazard ratio (HR; 95% confidence interval [CI]) for Cox regression analysis. Results: On the FundusCapi dataset, the segmentation performance was AUC = 0.95, accuracy = 0.94, sensitivity = 0.90, and specificity = 0.93. Smaller vessel skeleton density had a stronger correlation with CVD risk factors and incidence (P < 0.01). Reduced density of small vessel skeletons was strongly associated with an increased risk of CVD incidence and mortality for women (HR [95% CI] = 0.91 [0.84-0.98] and 0.68 [0.54-0.86], respectively). Conclusions: Using paired CF-FFA images, we automated the laborious manual labeling process and enabled noninvasive capillary quantification from CF, supporting its potential as a sensitive screening method for identifying individuals at high risk of future CVD events. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
Curr Opin Ophthalmol ; 35(3): 205-209, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334288

RESUMO

PURPOSE OF REVIEW: This review seeks to provide a summary of the most recent research findings regarding the utilization of ChatGPT, an artificial intelligence (AI)-powered chatbot, in the field of ophthalmology in addition to exploring the limitations and ethical considerations associated with its application. RECENT FINDINGS: ChatGPT has gained widespread recognition and demonstrated potential in enhancing patient and physician education, boosting research productivity, and streamlining administrative tasks. In various studies examining its utility in ophthalmology, ChatGPT has exhibited fair to good accuracy, with its most recent iteration showcasing superior performance in providing ophthalmic recommendations across various ophthalmic disorders such as corneal diseases, orbital disorders, vitreoretinal diseases, uveitis, neuro-ophthalmology, and glaucoma. This proves beneficial for patients in accessing information and aids physicians in triaging as well as formulating differential diagnoses. Despite such benefits, ChatGPT has limitations that require acknowledgment including the potential risk of offering inaccurate or harmful information, dependence on outdated data, the necessity for a high level of education for data comprehension, and concerns regarding patient privacy and ethical considerations within the research domain. SUMMARY: ChatGPT is a promising new tool that could contribute to ophthalmic healthcare education and research, potentially reducing work burdens. However, its current limitations necessitate a complementary role with human expert oversight.


Assuntos
Inteligência Artificial , Médicos , Humanos , Escolaridade , Gerenciamento Clínico , Aconselhamento
5.
Ophthalmol Retina ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38280425

RESUMO

OBJECTIVE: To review recent technological advancement in imaging, surgical visualization, robotics technology, and the use of artificial intelligence in surgical vitreoretinal (VR) diseases. BACKGROUND: Technological advancements in imaging enhance both preoperative and intraoperative management of surgical VR diseases. Widefield imaging in fundal photography and OCT can improve assessment of peripheral retinal disorders such as retinal detachments, degeneration, and tumors. OCT angiography provides a rapid and noninvasive imaging of the retinal and choroidal vasculature. Surgical visualization has also improved with intraoperative OCT providing a detailed real-time assessment of retinal layers to guide surgical decisions. Heads-up display and head-mounted display utilize 3-dimensional technology to provide surgeons with enhanced visual guidance and improved ergonomics during surgery. Intraocular robotics technology allows for greater surgical precision and is shown to be useful in retinal vein cannulation and subretinal drug delivery. In addition, deep learning techniques leverage on diverse data including widefield retinal photography and OCT for better predictive accuracy in classification, segmentation, and prognostication of many surgical VR diseases. CONCLUSION: This review article summarized the latest updates in these areas and highlights the importance of continuous innovation and improvement in technology within the field. These advancements have the potential to reshape management of surgical VR diseases in the very near future and to ultimately improve patient care. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

7.
JAMA Ophthalmol ; 141(12): 1117-1124, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883115

RESUMO

Importance: High myopia is a global concern due to its escalating prevalence and the potential risk of severe visual impairment caused by pathologic myopia. Using artificial intelligence to estimate future visual acuity (VA) could help clinicians to identify and monitor patients with a high risk of vision reduction in advance. Objective: To develop machine learning models to predict VA at 3 and 5 years in patients with high myopia. Design, Setting, and Participants: This retrospective, single-center, cohort study was performed on patients whose best-corrected VA (BCVA) at 3 and 5 years was known. The ophthalmic examinations of these patients were performed between October 2011 and May 2021. Thirty-four variables, including general information, basic ophthalmic information, and categories of myopic maculopathy based on fundus and optical coherence tomography images, were collected from the medical records for analysis. Main Outcomes and Measures: Regression models were developed to predict BCVA at 3 and 5 years, and a binary classification model was developed to predict the risk of developing visual impairment at 5 years. The performance of models was evaluated by discrimination metrics, calibration belts, and decision curve analysis. The importance of relative variables was assessed by explainable artificial intelligence techniques. Results: A total of 1616 eyes from 967 patients (mean [SD] age, 58.5 [14.0] years; 678 female [70.1%]) were included in this analysis. Findings showed that support vector machines presented the best prediction of BCVA at 3 years (R2 = 0.682; 95% CI, 0.625-0.733) and random forest at 5 years (R2 = 0.660; 95% CI, 0.604-0.710). To predict the risk of visual impairment at 5 years, logistic regression presented the best performance (area under the receiver operating characteristic curve = 0.870; 95% CI, 0.816-0.912). The baseline BCVA (logMAR odds ratio [OR], 0.298; 95% CI, 0.235-0.378; P < .001), prior myopic macular neovascularization (OR, 3.290; 95% CI, 2.209-4.899; P < .001), age (OR, 1.578; 95% CI, 1.227-2.028; P < .001), and category 4 myopic maculopathy (OR, 4.899; 95% CI, 1.431-16.769; P = .01) were the 4 most important predicting variables and associated with increased risk of visual impairment at 5 years. Conclusions and Relevance: Study results suggest that developing models for accurate prediction of the long-term VA for highly myopic eyes based on clinical and imaging information is feasible. Such models could be used for the clinical assessments of future visual acuity.


Assuntos
Degeneração Macular , Miopia Degenerativa , Miopia , Doenças Retinianas , Baixa Visão , Humanos , Feminino , Pessoa de Meia-Idade , Estudos de Coortes , Estudos Retrospectivos , Inteligência Artificial , Miopia/epidemiologia , Acuidade Visual , Doenças Retinianas/etiologia , Degeneração Macular/complicações , Baixa Visão/etiologia , Transtornos da Visão/diagnóstico , Transtornos da Visão/complicações , Tomografia de Coerência Óptica/efeitos adversos , Aprendizado de Máquina , Miopia Degenerativa/complicações , Miopia Degenerativa/diagnóstico
8.
Front Public Health ; 11: 1196596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822534

RESUMO

Digital health technologies have been in use for many years in a wide spectrum of healthcare scenarios. This narrative review outlines the current use and the future strategies and significance of digital health technologies in modern healthcare applications. It covers the current state of the scientific field (delineating major strengths, limitations, and applications) and envisions the future impact of relevant emerging key technologies. Furthermore, we attempt to provide recommendations for innovative approaches that would accelerate and benefit the research, translation and utilization of digital health technologies.


Assuntos
Tecnologia Biomédica , Atenção à Saúde
10.
Curr Opin Ophthalmol ; 34(5): 414-421, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527195

RESUMO

PURPOSE OF REVIEW: Smart eyewear is a head-worn wearable device that is evolving as the next phase of ubiquitous wearables. Although their applications in healthcare are being explored, they have the potential to revolutionize teleophthalmology care. This review highlights their applications in ophthalmology care and discusses future scope. RECENT FINDINGS: Smart eyewear equips advanced sensors, optical displays, and processing capabilities in a wearable form factor. Rapid technological developments and the integration of artificial intelligence are expanding their reach from consumer space to healthcare applications. This review systematically presents their applications in treating and managing eye-related conditions. This includes remote assessments, real-time monitoring, telehealth consultations, and the facilitation of personalized interventions. They also serve as low-vision assistive devices to help visually impaired, and can aid physicians with operational and surgical tasks. SUMMARY: Wearables such as smart eyewear collects rich, continuous, objective, individual-specific data, which is difficult to obtain in a clinical setting. By leveraging sophisticated data processing and artificial intelligence based algorithms, these data can identify at-risk patients, recognize behavioral patterns, and make timely interventions. They promise cost-effective and personalized treatment for vision impairments in an effort to mitigate the global burden of eye-related conditions and aging.

11.
Taiwan J Ophthalmol ; 13(2): 142-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484621

RESUMO

Myopia as an uncorrected visual impairment is recognized as a global public health issue with an increasing burden on health-care systems. Moreover, high myopia increases one's risk of developing pathologic myopia, which can lead to irreversible visual impairment. Thus, increased resources are needed for the early identification of complications, timely intervention to prevent myopia progression, and treatment of complications. Emerging artificial intelligence (AI) and digital technologies may have the potential to tackle these unmet needs through automated detection for screening and risk stratification, individualized prediction, and prognostication of myopia progression. AI applications in myopia for children and adults have been developed for the detection, diagnosis, and prediction of progression. Novel AI technologies, including multimodal AI, explainable AI, federated learning, automated machine learning, and blockchain, may further improve prediction performance, safety, accessibility, and also circumvent concerns of explainability. Digital technology advancements include digital therapeutics, self-monitoring devices, virtual reality or augmented reality technology, and wearable devices - which provide possible avenues for monitoring myopia progression and control. However, there are challenges in the implementation of these technologies, which include requirements for specific infrastructure and resources, demonstrating clinically acceptable performance and safety of data management. Nonetheless, this remains an evolving field with the potential to address the growing global burden of myopia.

13.
Curr Opin Ophthalmol ; 34(5): 396-402, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326216

RESUMO

PURPOSE OF REVIEW: The aim of this review is to define the "state-of-the-art" in artificial intelligence (AI)-enabled devices that support the management of retinal conditions and to provide Vision Academy recommendations on the topic. RECENT FINDINGS: Most of the AI models described in the literature have not been approved for disease management purposes by regulatory authorities. These new technologies are promising as they may be able to provide personalized treatments as well as a personalized risk score for various retinal diseases. However, several issues still need to be addressed, such as the lack of a common regulatory pathway and a lack of clarity regarding the applicability of AI-enabled medical devices in different populations. SUMMARY: It is likely that current clinical practice will need to change following the application of AI-enabled medical devices. These devices are likely to have an impact on the management of retinal disease. However, a consensus needs to be reached to ensure they are safe and effective for the overall population.


Assuntos
Inteligência Artificial , Doenças Retinianas , Humanos , Consenso , Doenças Retinianas/terapia
14.
Curr Opin Ophthalmol ; 34(5): 403-413, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326222

RESUMO

PURPOSE OF REVIEW: The application of artificial intelligence (AI) technologies in screening and diagnosing retinal diseases may play an important role in telemedicine and has potential to shape modern healthcare ecosystems, including within ophthalmology. RECENT FINDINGS: In this article, we examine the latest publications relevant to AI in retinal disease and discuss the currently available algorithms. We summarize four key requirements underlining the successful application of AI algorithms in real-world practice: processing massive data; practicability of an AI model in ophthalmology; policy compliance and the regulatory environment; and balancing profit and cost when developing and maintaining AI models. SUMMARY: The Vision Academy recognizes the advantages and disadvantages of AI-based technologies and gives insightful recommendations for future directions.


Assuntos
Inteligência Artificial , Doenças Retinianas , Humanos , Consenso , Ecossistema , Algoritmos , Doenças Retinianas/diagnóstico
16.
Front Big Data ; 6: 1017420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818823

RESUMO

The accelerated growth in electronic health records (EHR), Internet-of-Things, mHealth, telemedicine, and artificial intelligence (AI) in the recent years have significantly fuelled the interest and development in big data research. Big data refer to complex datasets that are characterized by the attributes of "5 Vs"-variety, volume, velocity, veracity, and value. Big data analytics research has so far benefitted many fields of medicine, including ophthalmology. The availability of these big data not only allow for comprehensive and timely examinations of the epidemiology, trends, characteristics, outcomes, and prognostic factors of many diseases, but also enable the development of highly accurate AI algorithms in diagnosing a wide range of medical diseases as well as discovering new patterns or associations of diseases that are previously unknown to clinicians and researchers. Within the field of ophthalmology, there is a rapidly expanding pool of large clinical registries, epidemiological studies, omics studies, and biobanks through which big data can be accessed. National corneal transplant registries, genome-wide association studies, national cataract databases, and large ophthalmology-related EHR-based registries (e.g., AAO IRIS Registry) are some of the key resources. In this review, we aim to provide a succinct overview of the availability and clinical applicability of big data in ophthalmology, particularly from the perspective of corneal diseases and cataract, the synergistic potential of big data, AI technologies, internet of things, mHealth, and wearable smart devices, and the potential barriers for realizing the clinical and research potential of big data in this field.

17.
NPJ Digit Med ; 6(1): 10, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702878

RESUMO

Our study aims to identify children at risk of developing high myopia for timely assessment and intervention, preventing myopia progression and complications in adulthood through the development of a deep learning system (DLS). Using a school-based cohort in Singapore comprising of 998 children (aged 6-12 years old), we train and perform primary validation of the DLS using 7456 baseline fundus images of 1878 eyes; with external validation using an independent test dataset of 821 baseline fundus images of 189 eyes together with clinical data (age, gender, race, parental myopia, and baseline spherical equivalent (SE)). We derive three distinct algorithms - image, clinical and mix (image + clinical) models to predict high myopia development (SE ≤ -6.00 diopter) during teenage years (5 years later, age 11-17). Model performance is evaluated using area under the receiver operating curve (AUC). Our image models (Primary dataset AUC 0.93-0.95; Test dataset 0.91-0.93), clinical models (Primary dataset AUC 0.90-0.97; Test dataset 0.93-0.94) and mixed (image + clinical) models (Primary dataset AUC 0.97; Test dataset 0.97-0.98) achieve clinically acceptable performance. The addition of 1 year SE progression variable has minimal impact on the DLS performance (clinical model AUC 0.98 versus 0.97 in primary dataset, 0.97 versus 0.94 in test dataset; mixed model AUC 0.99 versus 0.97 in primary dataset, 0.95 versus 0.98 in test dataset). Thus, our DLS allows prediction of the development of high myopia by teenage years amongst school-going children. This has potential utility as a clinical-decision support tool to identify "at-risk" children for early intervention.

18.
J Neuroophthalmol ; 43(2): 159-167, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719740

RESUMO

BACKGROUND: The examination of the optic nerve head (optic disc) is mandatory in patients with headache, hypertension, or any neurological symptoms, yet it is rarely or poorly performed in general clinics. We recently developed a brain and optic nerve study with artificial intelligence-deep learning system (BONSAI-DLS) capable of accurately detecting optic disc abnormalities including papilledema (swelling due to elevated intracranial pressure) on digital fundus photographs with a comparable classification performance to expert neuro-ophthalmologists, but its performance compared to first-line clinicians remains unknown. METHODS: In this international, cross-sectional multicenter study, the DLS, trained on 14,341 fundus photographs, was tested on a retrospectively collected convenience sample of 800 photographs (400 normal optic discs, 201 papilledema and 199 other abnormalities) from 454 patients with a robust ground truth diagnosis provided by the referring expert neuro-ophthalmologists. The areas under the receiver-operating-characteristic curves were calculated for the BONSAI-DLS. Error rates, accuracy, sensitivity, and specificity of the algorithm were compared with those of 30 clinicians with or without ophthalmic training (6 general ophthalmologists, 6 optometrists, 6 neurologists, 6 internists, 6 emergency department [ED] physicians) who graded the same testing set of images. RESULTS: With an error rate of 15.3%, the DLS outperformed all clinicians (average error rates 24.4%, 24.8%, 38.2%, 44.8%, 47.9% for general ophthalmologists, optometrists, neurologists, internists and ED physicians, respectively) in the overall classification of optic disc appearance. The DLS displayed significantly higher accuracies than 100%, 86.7% and 93.3% of clinicians (n = 30) for the classification of papilledema, normal, and other disc abnormalities, respectively. CONCLUSIONS: The performance of the BONSAI-DLS to classify optic discs on fundus photographs was superior to that of clinicians with or without ophthalmic training. A trained DLS may offer valuable diagnostic aid to clinicians from various clinical settings for the screening of optic disc abnormalities harboring potentially sight- or life-threatening neurological conditions.


Assuntos
Aprendizado Profundo , Disco Óptico , Papiledema , Humanos , Disco Óptico/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Estudos Transversais
19.
Asia Pac J Ophthalmol (Phila) ; 12(1): 80-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706335

RESUMO

Diagnosis and detection of progression of glaucoma remains challenging. Artificial intelligence-based tools have the potential to improve and standardize the assessment of glaucoma but development of these algorithms is difficult given the multimodal and variable nature of the diagnosis. Currently, most algorithms are focused on a single imaging modality, specifically screening and diagnosis based on fundus photos or optical coherence tomography images. Use of anterior segment optical coherence tomography and goniophotographs is limited. The majority of algorithms designed for disease progression prediction are based on visual fields. No studies in our literature search assessed the use of artificial intelligence for treatment response prediction and no studies conducted prospective testing of their algorithms. Additional challenges to the development of artificial intelligence-based tools include scarcity of data and a lack of consensus in diagnostic criteria. Although research in the use of artificial intelligence for glaucoma is promising, additional work is needed to develop clinically usable tools.


Assuntos
Aprendizado Profundo , Glaucoma , Humanos , Inteligência Artificial , Estudos Prospectivos , Glaucoma/diagnóstico , Algoritmos
20.
Br J Ophthalmol ; 107(5): 600-606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35288438

RESUMO

Pathologic myopia is a severe form of myopia that can lead to permanent visual impairment. The recent global increase in the prevalence of myopia has been projected to lead to a higher incidence of pathologic myopia in the future. Thus, imaging myopic eyes to detect early pathological changes, or predict myopia progression to allow for early intervention, has become a key priority. Recent advances in optical coherence tomography (OCT) have contributed to the new grading system for myopic maculopathy and myopic traction maculopathy, which may improve phenotyping and thus, clinical management. Widefield fundus and OCT imaging has improved the detection of posterior staphyloma. Non-invasive OCT angiography has enabled depth-resolved imaging for myopic choroidal neovascularisation. Artificial intelligence (AI) has shown great performance in detecting pathologic myopia and the identification of myopia-associated complications. These advances in imaging with adjunctive AI analysis may lead to improvements in monitoring disease progression or guiding treatments. In this review, we provide an update on the classification of pathologic myopia, how imaging has improved clinical evaluation and management of myopia-associated complications, and the recent development of AI algorithms to aid the detection and classification of pathologic myopia.


Assuntos
Degeneração Macular , Miopia Degenerativa , Humanos , Miopia Degenerativa/diagnóstico por imagem , Inteligência Artificial , Tomografia de Coerência Óptica/métodos , Transtornos da Visão/etiologia , Fundo de Olho , Degeneração Macular/complicações , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...